headerdesktop cve26iun25

MAI SUNT 00:00:00:00

MAI SUNT

X

headermobile cve26iun25

MAI SUNT 00:00:00:00

MAI SUNT

X

Almost Periodicity and Almost Automorphy: For Evolution Equations and Partial Functional Differential Equations

Almost Periodicity and Almost Automorphy: For Evolution Equations and Partial Functional Differential Equations - Abdallah Afoukal

Almost Periodicity and Almost Automorphy: For Evolution Equations and Partial Functional Differential Equations

When we study differential equations in Banach spaces whose coefficients are linear unbounded operators, we feel that we are working in ordinary differential equations; however, the fact that the operator coefficients are unbounded makes things quite different from what is known in the classical case. Examples or applications for such equations are naturally found in the theory of partial differential equations. More specifically, if we give importance to the time variable at the expense of the spatial variables, we obtain an "ordinary differential equation" with respect to the variable which was put in evidence. Thus, for example, the heat or the wave equation gives rise to ordinary differential equations of this kind. Adding boundary conditions can often be translated in terms of considering solutions in some convenient functional Banach space. The theory of semigroups of operators provides an elegant approach to study this kind of systems. Therefore, we can frequently guess or even prove theorems on differential equations in Banach spaces looking at a corresponding pattern in finite dimensional ordinary differential equations.

Citeste mai mult

-10%

transport gratuit

PRP: 681.94 Lei

!

Acesta este Pretul Recomandat de Producator. Pretul de vanzare al produsului este afisat mai jos.

613.75Lei

613.75Lei

681.94 Lei

Primesti 613 puncte

Important icon msg

Primesti puncte de fidelitate dupa fiecare comanda! 100 puncte de fidelitate reprezinta 1 leu. Foloseste-le la viitoarele achizitii!

Livrare in 2-4 saptamani

Descrierea produsului

When we study differential equations in Banach spaces whose coefficients are linear unbounded operators, we feel that we are working in ordinary differential equations; however, the fact that the operator coefficients are unbounded makes things quite different from what is known in the classical case. Examples or applications for such equations are naturally found in the theory of partial differential equations. More specifically, if we give importance to the time variable at the expense of the spatial variables, we obtain an "ordinary differential equation" with respect to the variable which was put in evidence. Thus, for example, the heat or the wave equation gives rise to ordinary differential equations of this kind. Adding boundary conditions can often be translated in terms of considering solutions in some convenient functional Banach space. The theory of semigroups of operators provides an elegant approach to study this kind of systems. Therefore, we can frequently guess or even prove theorems on differential equations in Banach spaces looking at a corresponding pattern in finite dimensional ordinary differential equations.

Citeste mai mult

S-ar putea sa-ti placa si

Parerea ta e inspiratie pentru comunitatea Libris!

Istoricul tau de navigare

Acum se comanda

Noi suntem despre carti, si la fel este si

Newsletter-ul nostru.

Aboneaza-te la vestile literare si primesti un cupon de -10% pentru viitoarea ta comanda!

*Reducerea aplicata prin cupon nu se cumuleaza, ci se aplica reducerea cea mai mare.

Ma abonez image one
Ma abonez image one