Countdown header img desk

MAI SUNT 00:00:00:00

MAI SUNT

X

Countdown header img  mob

MAI SUNT 00:00:00:00

MAI SUNT

X

Promotii popup img

🌞2+1 GRATIS 🌞

Art, Arthur, Paladin

Transport la 4.99 lei

Nu rata! 👉

Applied Causal Inference

Applied Causal Inference - Uday Kamath

Applied Causal Inference

Recent advancements in causal inference have made it possible to gain profound insight about our world and the complex systems which operate in it. While industry professionals and academics in every domain ask questions of their data, traditional statistical methods often fall short of providing conclusive answers. This is where causality can help.

This book gives readers the tools necessary to use causal inference in applied settings by building from theoretical foundations all the way to hands-on case studies in Python. We wrote this book primarily for the practitioner who knows how to work with data but may not be familiar with causal inference concepts, or how to apply those concepts to real-world problems.

Part 1 of the book builds from the basic principles of causal inference to the estimation process and into causal discovery, with accompanying exercises and case studies to reinforce concepts. In Parts 2 and 3, we go deeper into cutting-edge applications of causality in machine learning domains, including computer vision, natural language processing, reinforcement learning, and model fairness. The combination of these focuses makes this book a perfect entrypoint into the world of causality for any machine learning professional.

Citeste mai mult

-10%

transport gratuit

PRP: 348.75 Lei

!

Acesta este Pretul Recomandat de Producator. Pretul de vanzare al produsului este afisat mai jos.

313.88Lei

313.88Lei

348.75 Lei

Primesti 313 puncte

Important icon msg

Primesti puncte de fidelitate dupa fiecare comanda! 100 puncte de fidelitate reprezinta 1 leu. Foloseste-le la viitoarele achizitii!

Livrare in 2-4 saptamani

Descrierea produsului

Recent advancements in causal inference have made it possible to gain profound insight about our world and the complex systems which operate in it. While industry professionals and academics in every domain ask questions of their data, traditional statistical methods often fall short of providing conclusive answers. This is where causality can help.

This book gives readers the tools necessary to use causal inference in applied settings by building from theoretical foundations all the way to hands-on case studies in Python. We wrote this book primarily for the practitioner who knows how to work with data but may not be familiar with causal inference concepts, or how to apply those concepts to real-world problems.

Part 1 of the book builds from the basic principles of causal inference to the estimation process and into causal discovery, with accompanying exercises and case studies to reinforce concepts. In Parts 2 and 3, we go deeper into cutting-edge applications of causality in machine learning domains, including computer vision, natural language processing, reinforcement learning, and model fairness. The combination of these focuses makes this book a perfect entrypoint into the world of causality for any machine learning professional.

Citeste mai mult

S-ar putea sa-ti placa si

De acelasi autor

Parerea ta e inspiratie pentru comunitatea Libris!

Istoricul tau de navigare

Acum se comanda

Noi suntem despre carti, si la fel este si

Newsletter-ul nostru.

Aboneaza-te la vestile literare si primesti un cupon de -10% pentru viitoarea ta comanda!

*Reducerea aplicata prin cupon nu se cumuleaza, ci se aplica reducerea cea mai mare.

Ma abonez image one
Ma abonez image one