headerdesktop happydaysian26

MAI SUNT 00:00:00:00

MAI SUNT

X

headermobile happydaysian26

MAI SUNT 00:00:00:00

MAI SUNT

X

Promotii popup img

🎉Happy Days for Happy Readers🎉

-80%, -30%, -50%, -78%

Carti, Accesorii, Jocuri

Comanda acum!

Deep Learning for ECG Synthesis

De (autor): Brian M. Hartz

Deep Learning for ECG Synthesis - Brian M. Hartz

Deep Learning for ECG Synthesis

De (autor): Brian M. Hartz

One of the major causes of death is cardiovascular diseases. In 2019, it reached 32% of all deaths worldwide. ECG is widely used in the diagnosis of cardiovascular diseases mostly since it is non-invasive and painless. Diagnosis is usually performed by human specialists which is timeconsuming

and prone to human error, in case of availability. However, automatic ECG diagnosis is becoming increasingly more acceptable since not only it eliminates randomized human errors, butalso it can be available as a bedside testing any time and anywhere using common and affordable

wearable heart monitoring devices. Automatic ECG diagnosis algorithms are usually deep neural network classifier models which classify the ECG beats depending on the general pattern of the ECG heartbeat

Citește mai mult

-20%

transport gratuit

PRP: 173.60 Lei

!

Acesta este Prețul Recomandat de Producător. Prețul de vânzare al produsului este afișat mai jos.

138.88Lei

138.88Lei

173.60 Lei

Primești 138 puncte

Important icon msg

Primești puncte de fidelitate după fiecare comandă! 100 puncte de fidelitate reprezintă 1 leu. Folosește-le la viitoarele achiziții!

Livrare in 2-4 saptamani

Plasează rapid comanda

Important icon msg

Poți comanda acest produs introducând numărul tău de telefon. În cel mai scurt timp vei fi apelat de un operator Libris pentru preluarea datelor necesare.

Completează mai jos numărul tău de telefon

Descrierea produsului

One of the major causes of death is cardiovascular diseases. In 2019, it reached 32% of all deaths worldwide. ECG is widely used in the diagnosis of cardiovascular diseases mostly since it is non-invasive and painless. Diagnosis is usually performed by human specialists which is timeconsuming

and prone to human error, in case of availability. However, automatic ECG diagnosis is becoming increasingly more acceptable since not only it eliminates randomized human errors, butalso it can be available as a bedside testing any time and anywhere using common and affordable

wearable heart monitoring devices. Automatic ECG diagnosis algorithms are usually deep neural network classifier models which classify the ECG beats depending on the general pattern of the ECG heartbeat

Citește mai mult

S-ar putea să-ți placă și

De același autor

Părerea ta e inspirație pentru comunitatea Libris!

Istoricul tău de navigare

Acum se comandă

Noi suntem despre cărți, și la fel este și

Newsletter-ul nostru.

Abonează-te la veștile literare și primești un cupon de -10% pentru viitoarea ta comandă!

*Reducerea aplicată prin cupon nu se cumulează, ci se aplică reducerea cea mai mare.

Mă abonez image one
Mă abonez image one
Accessibility Logo