Countdown header img desk

MAI SUNT 00:00:00:00

MAI SUNT

X

Countdown header img  mob

MAI SUNT 00:00:00:00

MAI SUNT

X

Promotii popup img

🎁Târgul Ghetuțelor🎁

Cadouri de Moș Nicolae

-77%, -30%, -50%

Comandă aici!

Mathematical Foundations of Information Theory

De (autor): Alexander I. Khinchin

Mathematical Foundations of Information Theory - Alexander I. Khinchin

Mathematical Foundations of Information Theory

De (autor): Alexander I. Khinchin


The first comprehensive introduction to information theory, this book places the work begun by Shannon and continued by McMillan, Feinstein, and Khinchin on a rigorous mathematical basis. For the first time, mathematicians, statisticians, physicists, cyberneticists, and communications engineers are offered a lucid, comprehensive introduction to this rapidly growing field.
In his first paper, Dr. Khinchin develops the concept of entropy in probability theory as a measure of uncertainty of a finite "scheme," and discusses a simple application to coding theory. The second paper investigates the restrictions previously placed on the study of sources, channels, and codes and attempts "to give a complete, detailed proof of both ... Shannon theorems, assuming any ergodic source and any stationary channel with a finite memory."
Partial Contents: I. The Entropy Concept in Probability Theory -- Entropy of Finite Schemes. The Uniqueness Theorem. Entropy of Markov chains. Application to Coding Theory. II. On the Fundamental Theorems of Information Theory -- Two generalizations of Shannon's inequality. Three inequalities of Feinstein. Concept of a source. Stationarity. Entropy. Ergodic sources. The E property. The martingale concept. Noise. Anticipation and memory. Connection of the channel to the source. Feinstein's Fundamental Lemma. Coding. The first Shannon theorem. The second Shannon theorem.
Citește mai mult

-20%

transport gratuit

PRP: 67.89 Lei

!

Acesta este Prețul Recomandat de Producător. Prețul de vânzare al produsului este afișat mai jos.

54.31Lei

54.31Lei

67.89 Lei

Primești 54 puncte

Important icon msg

Primești puncte de fidelitate după fiecare comandă! 100 puncte de fidelitate reprezintă 1 leu. Folosește-le la viitoarele achiziții!

Livrare in 2-4 saptamani

Descrierea produsului


The first comprehensive introduction to information theory, this book places the work begun by Shannon and continued by McMillan, Feinstein, and Khinchin on a rigorous mathematical basis. For the first time, mathematicians, statisticians, physicists, cyberneticists, and communications engineers are offered a lucid, comprehensive introduction to this rapidly growing field.
In his first paper, Dr. Khinchin develops the concept of entropy in probability theory as a measure of uncertainty of a finite "scheme," and discusses a simple application to coding theory. The second paper investigates the restrictions previously placed on the study of sources, channels, and codes and attempts "to give a complete, detailed proof of both ... Shannon theorems, assuming any ergodic source and any stationary channel with a finite memory."
Partial Contents: I. The Entropy Concept in Probability Theory -- Entropy of Finite Schemes. The Uniqueness Theorem. Entropy of Markov chains. Application to Coding Theory. II. On the Fundamental Theorems of Information Theory -- Two generalizations of Shannon's inequality. Three inequalities of Feinstein. Concept of a source. Stationarity. Entropy. Ergodic sources. The E property. The martingale concept. Noise. Anticipation and memory. Connection of the channel to the source. Feinstein's Fundamental Lemma. Coding. The first Shannon theorem. The second Shannon theorem.
Citește mai mult

S-ar putea să-ți placă și

De același autor

Părerea ta e inspirație pentru comunitatea Libris!

Istoricul tău de navigare

Noi suntem despre cărți, și la fel este și

Newsletter-ul nostru.

Abonează-te la veștile literare și primești un cupon de -10% pentru viitoarea ta comandă!

*Reducerea aplicată prin cupon nu se cumulează, ci se aplică reducerea cea mai mare.

Mă abonez image one
Mă abonez image one
Accessibility Logo