headerdesktop corintwktrgr26apr24

MAI SUNT 00:00:00:00

MAI SUNT

X

headermobile corintwktrgr26apr24

MAI SUNT 00:00:00:00

MAI SUNT

X

Promotii popup img

-50% -30% la Corint si Leda

siii TRANSPORT GRATUIT

la TOATE comenzile peste 50 lei!

Profita acum!

Nonlinear Waves and Inverse Scattering Transform

Nonlinear Waves and Inverse Scattering Transform - Spencer P. Kuo

Nonlinear Waves and Inverse Scattering Transform

Nonlinear waves are essential phenomena in scientific and engineering disciplines. The features of nonlinear waves are usually described by solutions to nonlinear partial differential equations (NLPDEs). This book was prepared to familiarize students with nonlinear waves and methods of solving NLPDEs, which will enable them to expand their studies into related areas. The selection of topics and the focus given to each provide essential materials for a lecturer teaching a nonlinear wave course.


Chapter 1 introduces "mode" types in nonlinear systems as well as Bäcklund transform, an indispensable technique to solve generic NLPDEs for stationary solutions. Chapters 2 and 3 are devoted to the derivation and solution characterization of three generic nonlinear equations: nonlinear Schrödinger equation, Korteweg-de Vries (KdV) equation, and Burgers equation. Chapter 4 is devoted to the inverse scattering transform (IST), addressing the initial value problems of a group of NLPDEs. In Chapter 5, derivations and proofs of the IST formulas are presented. Steps for applying IST to solve NLPDEs for solitary solutions are illustrated in Chapter 6.


Nonlinear waves are essential phenomena in scientific and engineering disciplines. The features of nonlinear waves are usually described by solutions to nonlinear partial differential equations (NLPDEs). This book was prepared to familiarize students with nonlinear waves and methods of solving NLPDEs, which will enable them to expand their studies into related areas. The selection of topics and the focus given to each provide essential materials for a lecturer teaching a nonlinear wave course.Chapter 1 introduces 'mode' types in nonlinear systems as well as Bäcklund transform, an indispensable technique to solve generic NLPDEs for stationary solutions. Chapters 2 and 3 are devoted to the derivation and solution characterization of three generic nonlinear equations: nonlinear Schrödinger equation, Korteweg-de Vries (KdV) equation, and Burgers equation. Chapter 4 is devoted to the inverse scattering transform (IST), addressing the initial value problems of a group of NLPDEs. In Chapter 5, derivations and proofs of the IST formulas are presented. Steps for applying IST to solve NLPDEs for solitary solutions are illustrated in Chapter 6.
Citeste mai mult

-10%

transport gratuit

PRP: 725.40 Lei

!

Acesta este Pretul Recomandat de Producator. Pretul de vanzare al produsului este afisat mai jos.

652.86Lei

652.86Lei

725.40 Lei

Primesti 652 puncte

Important icon msg

Primesti puncte de fidelitate dupa fiecare comanda! 100 puncte de fidelitate reprezinta 1 leu. Foloseste-le la viitoarele achizitii!

Indisponibil

Descrierea produsului

Nonlinear waves are essential phenomena in scientific and engineering disciplines. The features of nonlinear waves are usually described by solutions to nonlinear partial differential equations (NLPDEs). This book was prepared to familiarize students with nonlinear waves and methods of solving NLPDEs, which will enable them to expand their studies into related areas. The selection of topics and the focus given to each provide essential materials for a lecturer teaching a nonlinear wave course.


Chapter 1 introduces "mode" types in nonlinear systems as well as Bäcklund transform, an indispensable technique to solve generic NLPDEs for stationary solutions. Chapters 2 and 3 are devoted to the derivation and solution characterization of three generic nonlinear equations: nonlinear Schrödinger equation, Korteweg-de Vries (KdV) equation, and Burgers equation. Chapter 4 is devoted to the inverse scattering transform (IST), addressing the initial value problems of a group of NLPDEs. In Chapter 5, derivations and proofs of the IST formulas are presented. Steps for applying IST to solve NLPDEs for solitary solutions are illustrated in Chapter 6.


Nonlinear waves are essential phenomena in scientific and engineering disciplines. The features of nonlinear waves are usually described by solutions to nonlinear partial differential equations (NLPDEs). This book was prepared to familiarize students with nonlinear waves and methods of solving NLPDEs, which will enable them to expand their studies into related areas. The selection of topics and the focus given to each provide essential materials for a lecturer teaching a nonlinear wave course.Chapter 1 introduces 'mode' types in nonlinear systems as well as Bäcklund transform, an indispensable technique to solve generic NLPDEs for stationary solutions. Chapters 2 and 3 are devoted to the derivation and solution characterization of three generic nonlinear equations: nonlinear Schrödinger equation, Korteweg-de Vries (KdV) equation, and Burgers equation. Chapter 4 is devoted to the inverse scattering transform (IST), addressing the initial value problems of a group of NLPDEs. In Chapter 5, derivations and proofs of the IST formulas are presented. Steps for applying IST to solve NLPDEs for solitary solutions are illustrated in Chapter 6.
Citeste mai mult

De pe acelasi raft

Parerea ta e inspiratie pentru comunitatea Libris!

Acum se comanda

Noi suntem despre carti, si la fel este si

Newsletter-ul nostru.

Aboneaza-te la vestile literare si primesti un cupon de -10% pentru viitoarea ta comanda!

*Reducerea aplicata prin cupon nu se cumuleaza, ci se aplica reducerea cea mai mare.

Ma abonez image one
Ma abonez image one