headerdesktop mosnick18noi25

MAI SUNT 00:00:00:00

MAI SUNT

X

headermobile mosnick18noi25

MAI SUNT 00:00:00:00

MAI SUNT

X

Promotii popup img

🎁Târgul Ghetuțelor🎁

Cadouri de Moș Nicolae

-77%, -30%, -50%

Comandă aici!

Partial Least Squares Regression: And Related Dimension Reduction Methods

De (autor): R. Dennis Cook

Partial Least Squares Regression: And Related Dimension Reduction Methods - R. Dennis Cook

Partial Least Squares Regression: And Related Dimension Reduction Methods

De (autor): R. Dennis Cook

Partial least squares (PLS) regression is, at its historical core, a black-box algorithmic method for dimension reduction and prediction based on an underlying linear relationship between a possibly vector-valued response and a number of predictors.

Through envelopes, much more has been learned about PLS regression, resulting in a mass of information that allows an envelope bridge that takes PLS regression from a black-box algorithm to a core statistical paradigm based on objective function optimization and, more generally, connects the applied sciences and statistics in the context of PLS. This book focuses on developing this bridge. It also covers uses of PLS outside of linear regression, including discriminant analysis, non-linear regression, generalized linear models and dimension reduction generally.

Key Features:

- Showcases the first serviceable method for studying high-dimensional regressions.

- Provides necessary background on PLS and its origin.

- R and Python programs are available for nearly all methods discussed in the book.

This book can be used as a reference and as a course supplement at the Master's level in Statistics and beyond. It will be of interest to both statisticians and applied scientists.

Citește mai mult

-20%

transport gratuit

PRP: 1023.00 Lei

!

Acesta este Prețul Recomandat de Producător. Prețul de vânzare al produsului este afișat mai jos.

818.40Lei

818.40Lei

1023.00 Lei

Primești 818 puncte

Important icon msg

Primești puncte de fidelitate după fiecare comandă! 100 puncte de fidelitate reprezintă 1 leu. Folosește-le la viitoarele achiziții!

Livrare in 2-4 saptamani

Descrierea produsului

Partial least squares (PLS) regression is, at its historical core, a black-box algorithmic method for dimension reduction and prediction based on an underlying linear relationship between a possibly vector-valued response and a number of predictors.

Through envelopes, much more has been learned about PLS regression, resulting in a mass of information that allows an envelope bridge that takes PLS regression from a black-box algorithm to a core statistical paradigm based on objective function optimization and, more generally, connects the applied sciences and statistics in the context of PLS. This book focuses on developing this bridge. It also covers uses of PLS outside of linear regression, including discriminant analysis, non-linear regression, generalized linear models and dimension reduction generally.

Key Features:

- Showcases the first serviceable method for studying high-dimensional regressions.

- Provides necessary background on PLS and its origin.

- R and Python programs are available for nearly all methods discussed in the book.

This book can be used as a reference and as a course supplement at the Master's level in Statistics and beyond. It will be of interest to both statisticians and applied scientists.

Citește mai mult

S-ar putea să-ți placă și

De același autor

Părerea ta e inspirație pentru comunitatea Libris!

Istoricul tău de navigare

Acum se comandă

Noi suntem despre cărți, și la fel este și

Newsletter-ul nostru.

Abonează-te la veștile literare și primești un cupon de -10% pentru viitoarea ta comandă!

*Reducerea aplicată prin cupon nu se cumulează, ci se aplică reducerea cea mai mare.

Mă abonez image one
Mă abonez image one
Accessibility Logo