headerdesktop targvara16iun25

MAI SUNT 00:00:00:00

MAI SUNT

X

headermobile targvara16iun25

MAI SUNT 00:00:00:00

MAI SUNT

X

Promotii popup img

Târgul Lecturilor de Vară

Transport Gratuit la peste 50 lei

-83% -50% -40% -30%

Spre poveștile de pus în valiză >>

Scaling Machine Learning with Spark: Distributed ML with Mllib, Tensorflow, and Pytorch

De (autor): Polak

Scaling Machine Learning with Spark: Distributed ML with Mllib, Tensorflow, and Pytorch - Adi Polak

Scaling Machine Learning with Spark: Distributed ML with Mllib, Tensorflow, and Pytorch

De (autor): Polak


Learn how to build end-to-end scalable machine learning solutions with Apache Spark. With this practical guide, author Adi Polak introduces data and ML practitioners to creative solutions that supersede today's traditional methods. You'll learn a more holistic approach that takes you beyond specific requirements and organizational goals--allowing data and ML practitioners to collaborate and understand each other better.

Scaling Machine Learning with Spark examines several technologies for building end-to-end distributed ML workflows based on the Apache Spark ecosystem with Spark MLlib, MLflow, TensorFlow, and PyTorch. If you're a data scientist who works with machine learning, this book shows you when and why to use each technology.

You will:

  • Explore machine learning, including distributed computing concepts and terminology
  • Manage the ML lifecycle with MLflow
  • Ingest data and perform basic preprocessing with Spark
  • Explore feature engineering, and use Spark to extract features
  • Train a model with MLlib and build a pipeline to reproduce it
  • Build a data system to combine the power of Spark with deep learning
  • Get a step-by-step example of working with distributed TensorFlow
  • Use PyTorch to scale machine learning and its internal architecture
Citeste mai mult

-15%

transport gratuit

PRP: 495.94 Lei

!

Acesta este Pretul Recomandat de Producator. Pretul de vanzare al produsului este afisat mai jos.

421.55Lei

421.55Lei

495.94 Lei

Primesti 421 puncte

Important icon msg

Primesti puncte de fidelitate dupa fiecare comanda! 100 puncte de fidelitate reprezinta 1 leu. Foloseste-le la viitoarele achizitii!

Livrare in 2-4 saptamani

Descrierea produsului


Learn how to build end-to-end scalable machine learning solutions with Apache Spark. With this practical guide, author Adi Polak introduces data and ML practitioners to creative solutions that supersede today's traditional methods. You'll learn a more holistic approach that takes you beyond specific requirements and organizational goals--allowing data and ML practitioners to collaborate and understand each other better.

Scaling Machine Learning with Spark examines several technologies for building end-to-end distributed ML workflows based on the Apache Spark ecosystem with Spark MLlib, MLflow, TensorFlow, and PyTorch. If you're a data scientist who works with machine learning, this book shows you when and why to use each technology.

You will:

  • Explore machine learning, including distributed computing concepts and terminology
  • Manage the ML lifecycle with MLflow
  • Ingest data and perform basic preprocessing with Spark
  • Explore feature engineering, and use Spark to extract features
  • Train a model with MLlib and build a pipeline to reproduce it
  • Build a data system to combine the power of Spark with deep learning
  • Get a step-by-step example of working with distributed TensorFlow
  • Use PyTorch to scale machine learning and its internal architecture
Citeste mai mult

S-ar putea sa-ti placa si

Parerea ta e inspiratie pentru comunitatea Libris!

Noi suntem despre carti, si la fel este si

Newsletter-ul nostru.

Aboneaza-te la vestile literare si primesti un cupon de -10% pentru viitoarea ta comanda!

*Reducerea aplicata prin cupon nu se cumuleaza, ci se aplica reducerea cea mai mare.

Ma abonez image one
Ma abonez image one